Kinesthetic Activities for Learning Quantum Mechanics

Elizabeth Gire

Oregon State University
AAPT Summer 2023

Coauthors

Corinne Manogue she/they

Kelby Hahn they/she

osuper.science.oregonstate.edu

Faculty

Elizabeth Gire
Corinne Manogue
Doris Li
Patty Hamerski
Tevian Dray
Emily Van Zee
Paul Emigh

Grad Students
Christian Solorio
Dustin Treece
Adam Frye
Jason Ward

Former Members

Jonathan Alfson
Kelby Hahn
David Roundy
Michael Vignal
MacKenzie Lenz
Greg Mulder
Emily Smith
Len Cerny
Kerry Brown
Grant Sherer
Ian Founds
Mesa Walker
Mary Bridget Kustusch
Rabindra Bajracharya

NSF DUE Grant Nos. 9653250, 0231194,
0618877, 0837829, 1023120, 1141330,
1323800,1612480,1836603,1836604

Arms Representation of Quantum States

Kinesthetic Activities for Upper Division Quantum Mechanics?!

Activate sensorimotor brain systems
Make decisions about how configure and move sequentially
Re-representation
For quantum systems (>1 people), have to socially negotiate
Introduces silliness and laughter
Formative assessment

Solomon, et al., Phys. Ed., 1991
Kontra, et al., Psychol. Sci., 2015
Duijzer, et al., Educ. Psychol. Rev., 2019
Struck \& Yerrick, J. Sci Educ. Technol., 2010,
Beichner, et al., Am. J. Phys., 1990
Hubber, Titler, \& Haslam, Res. Sci. Educ., 2010

Instructional Context

Paradigms in Physics

Quantum Fundamentals \& Central Forces Courses

- "Spins First" Approach (McIntyre textbook)
- Stern-Gerlach Simulation to explore postulates of quantum mechanics
- Emphasize Multiple Representations
- Computational lab

$$
\begin{gathered}
{\left[\begin{array}{c}
1 / \sqrt{2} \\
i / \sqrt{2}
\end{array}\right] \quad 1 / \sqrt{2}|+\rangle+i / \sqrt{2}|-\rangle} \\
\psi(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
\end{gathered}
$$

Arms Representation

Arms Basics

Arms Pros \& Cons

$\sqrt{ }$ 4D
\checkmark Phase Angle Salient
\checkmark Accommodate Physical Ability
\checkmark Components of complex numbers vs. quantum basis
\checkmark Memorable

Hahn \& Gire, Am. J. Phys., 2022

Arms Pros \& Cons

$\sqrt{ }$ 4D
\checkmark Phase Angle Salient
\checkmark Accommodate Physical Ability
\checkmark Components of complex numbers vs. quantum basis
\checkmark Memorable

- Arm length not adjustable for different norms
- Lots of information that is not externalized
- Visualization?
- Self Consciousness

Quantum Concepts \& Representations

Quantum states are vectors with complex components

$$
|\psi\rangle=c_{+}|+\rangle+c_{-}|-\rangle \quad|\psi\rangle \doteq\left[\begin{array}{l}
c_{+} \\
c_{-}
\end{array}\right]
$$

Quantum Concepts \& Representations

Cartesian space and Hilbert space are different

$$
|\psi\rangle=\cos \frac{\theta}{2}|+\rangle+\sin \frac{\theta}{2} e^{i \varphi}|-\rangle
$$

Quantum Concepts \& Representations

Vectors that differ by an overall phase represent the same quantum state

$$
|\psi\rangle=c_{+}|+\rangle+c_{-}|-\rangle \quad|\psi\rangle=e^{i \phi}\left(c_{+}|+\rangle+c_{-}|-\rangle\right)
$$

Quantum Concepts \& Representations

Quantum states evolve with time - time \& energy-dependent phase on terms in energy eigenstate expansion

$$
|\psi(t)\rangle=c_{+} e^{-i E_{+} / t /}|+\rangle+c_{-} e^{-i E_{-} t / \hbar}|-\rangle
$$

Quantum Concepts \& Representations

Formalisms for discrete and continuous quantum systems are related.

$$
c_{ \pm}={ }_{z}\langle \pm \mid \psi\rangle \quad \psi(x)=\langle x \mid \psi\rangle
$$

Arms Activities

Complex Numbers
Quantum State Relative \& Overall Phase
Time Evolution
Wavefunction
Inner Product of Spin-1/2 States
Time Evolution of a Particle on a Ring
This talk

Inner Product of Spin-1/2 System

Quantum Concepts \& Representations

Measurement probabilities are related to inner products between quantum states

$$
\mathscr{P}\left(S_{z}=\frac{+\hbar}{2}\right)=|z\langle+\mid \psi\rangle|^{2}
$$

Inner Product of Spin-1/2 System

Ask pair of students to represent an arbitrary state.

Inner Product of Spin-1/2 System

Introduce a second state (each rotated by $\pi / 2$)
Are these states orthogonal?

Inner Product of Spin-1/2 System

Complex Conjugate 1 pair

Inner Product of Spin-1/2 System

Complex Conjugate 1 pair

Multiply component-wise

Inner Product of Spin-1/2 System

$$
c_{+, 1}^{*} c_{+, 2}+c_{-, 1}^{*} c_{-, 2}
$$

Complex Conjugate 1 pair

Multiply component-wise

Pedagogical Affordances

\checkmark Emphasizes steps, particularly

- complex conjugate
- aligning components
- Arm length not adjustable for different norms
- Adding "tip-to-tail" requires effort

Time Evolution of a Quantum Particle on a Ring

Time Evolution of Particle on a Ring

$$
E_{m}(\phi) \doteq\langle\phi \mid m\rangle=\frac{1}{\sqrt{2 \pi}} e^{i m \phi} \quad E_{m}=\frac{m^{2} \hbar^{2}}{2 I}
$$

Probability Density for $m=1$

Representing QM Particle on a Ring with Arms

Assign angular positions to students

Energy Eigenstate

$$
\begin{aligned}
& \mathbf{m}=\mathbf{1} \\
& E_{1}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i \phi}
\end{aligned}
$$

Time Evolution

$$
m=1
$$

$\begin{aligned} E_{1}(\phi) & =\frac{1}{\sqrt{2 \pi}} e^{-i E_{1} t / \hbar} e^{i \phi} \\ & =\frac{1}{\sqrt{2 \pi}} e^{i\left(\phi-E_{1} t / \hbar\right)}\end{aligned}$

Time Evolution - Shoulder View

 $m=1$$$
\begin{aligned}
E_{1}(\phi) & =\frac{1}{\sqrt{2 \pi}} e^{-i E_{1} t / \hbar} e^{i \phi} \\
& =\frac{1}{\sqrt{2 \pi}} e^{i\left(\phi-E_{1} t / \hbar\right)}
\end{aligned}
$$

Energy Eigenstate

$$
\mathrm{m}=2
$$

$$
E_{2}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i 2 \phi}
$$

Time Evolution

 $\mathrm{m}=2$$$
\begin{aligned}
E_{2}(\phi) & =\frac{1}{\sqrt{2 \pi}} e^{-i E_{2} t / \hbar} e^{i 2 \phi} \\
& =\frac{1}{\sqrt{2 \pi}} e^{i\left(2 \phi-E_{2} t / \hbar\right)}
\end{aligned}
$$

$$
E_{2}=4 E_{1}
$$

Time Evolution

$\mathrm{m}=2$

$$
\begin{aligned}
E_{2}(\phi) & =\frac{1}{\sqrt{2 \pi}} e^{-i E_{2} t / \hbar} e^{i 2 \phi} \\
& =\frac{1}{\sqrt{2 \pi}} e^{i\left(2 \phi-E_{2} t / \hbar\right)}
\end{aligned}
$$

$$
E_{2}=4 E_{1}
$$

Time Evolution

Superposition

QuVis (St Andrews)

https://www.st-andrews.ac.uk/physics/quvis/

Graphical Superposition

Infinite Square Well

Pedagogical Affordances

\checkmark For eigenstates, arms are norm=1
\checkmark Highlights differences between stationary and non-stationary states
\checkmark Superposition at each position results in complicated time evolution

- Requires at least 8 students
- Completing the superposition is difficult

Quantum Measurement Skit

Quantum Concepts \& Representations

Measurement results in a probabilistic projection onto the output basis and renormalization

$$
\left|\psi_{\text {out }}\right\rangle=\frac{\hat{P}\left|\psi_{\text {in }}\right\rangle}{\left\langle\psi_{\text {in }}\right| \hat{P}\left|\psi_{\text {in }}\right\rangle}
$$

Quantum Measurement Skit

Stern-Gerlach Apparatus

Quantum Measurement Skit

Quantum Measurement Skit

Stern-Gerlach Apparatus

Quantum Measurement Skit

Stern-Gerlach Apparatus

Quantum Measurement Skit

Particle

Quantum Measurement Skit

Particle

Quantum Measurement Skit

Particle

Quantum Measurement Skit

Quantum Measurement Skit

Quantum Measurement Skit

Pedagogical Affordances

\checkmark Emphasizes the probabilistic nature of measurement
\checkmark Probabilities determined by the state
\checkmark Which probabilities dictated by the measurement process

- Descriptive rather than explanatory
- Doesn't describe the mechanism of collapse

Future Work

PER about

- reasoning during inner product activity
- kinesthetic activities \& student identity

Frye, MS Project

Hahn Dissertation, Oregon State, 2022

- pedagogical affordances

More activities to be developed

Paradigms in Physics

paradigms.oregonstate.edu

Our Brand NeW |PY〉<P| Paradigms @ OSU Activities - Whitepapers - About - Account-
Welcome to the Paradigms in Physics curricular materials website!
 If you're interested in browsing our content, probably the most useful approach is to browse the sequences of activities and homework.

Search for Activities! With Instructor Guides

View Whole
Courses!
Visit our OSU PER group website for more information about related research.
Featured Searches:
quantum angular momentum spin arms kinesthetic "Raising Physics to the Surface"

Thank You!

liz.gire@oregonstate.edu
paradigms.oregonstate.edu

