

Discrete and Continuous Connections: Reflective Interview on a Computational Activity

Christian D. Solorio (he/him)

Elizabeth Gire

Oregon State University AAPT July 19th, 2023

Broad Research Goal

Investigate how students leverage what they know about discrete quantum systems when learning about continuous ones

Spins First Quantum Mechanics Course Overview

Spin-¹/₂ Systems

- Use matrices and linear algebra
- States are discrete, finite

Broad Spin-1/2 Course Overview

Spin-¹/₂ Systems

- Use matrices and linear algebra
- States are discrete, finite

Infinite Square Well

- Uses linear algebra and calculus
- States can be continuous (position basis), discrete and infinite (energy basis)

Broad Spin-1/2 Course Overview

Broad Spin-1/2 Course Overview

Utilizing Computation as a Bridge

Wave functions are discretized for computational operations

$$\psi(x) = Ax(L-x)$$

Discretization!

Wavefunctions are discretized for computational operations

Research Question

What are the conceptual challenges of discretization that students engage with in a computational lab course?

Video Elicitation Interview

Mary was a part of an observational study in W21

Became a TA for the computational lab course in W22

Conducted an hour long semi-structured interview

Watched a 10-min clip of her and her partner working on a computational activity

Mary reflected on her experience of the activity as a student and as a TA

Activity: Finite Difference Approximation of \hat{T}

Activity: Finite Difference Approximation of \widehat{T}

Results:

Two Productive Discretization Challenges

Recognizing functions as column vectors

Interpreting Δx

Challenge 1: Recognizing functions as column vectors

Interview

"It's hard to think about what it even means to have the **wave function** in a **matrix form** and like have an operator in matrix form"

Mary (W22)

Challenge 1: Recognizing functions as column vectors

+ Understanding that ψ is an uncountably infinite set of coefficients

+ Relationship between Δx size and accuracy of approximation

$$\boldsymbol{\psi}(\boldsymbol{x}) \longrightarrow \begin{pmatrix} \psi(\Delta x) \\ \psi(2\Delta x) \\ \psi(3\Delta x) \\ \psi(4\Delta x) \\ \vdots \end{pmatrix} \longrightarrow \psi(x) \to \{\psi(0), \psi(\Delta x), \psi(2\Delta x), \dots \psi(L)\}$$

Challenge 1: Recognizing functions as column vectors¹⁰

Mary's drawing of the discretized wave function from the W22 Interview Interview

"Yeah, so we're **approximating a continuous psi**...with a discrete representation and **rather than having some infinitely long set** from... 0 to L...we're breaking it up into **we're only taking certain points along the line**."

Mary (W22)

Challenge 2: Interpretations of Δx

Mary's partner's drawing of the infinite square well from the W21 video

Interview

"I think just seeing Δx on a page is nice, because then you're like, 'Okay, what was Δx supposed to be?'. Um, except for that what I'm learning now is that Δx isn't actually like on a bar graph where you have between two points [sic]. It's literally just a point on the graph."

Mary (W22)

Challenge 2: Interpretations of Δx

- "Space between points" interpretation
 - + Understanding how Δx breaks up L
 - + Connection between Δx size and number of ψ elements
- "Single Point" interpretation
 - + Evaluating $\psi(\Delta x)$
 - + Connecting $\psi(\mathbf{x})$ to a graphical representation of the ISW

Conclusions

- Discretization can be conceptually challenging
- The challenges encouraged productive reasoning
- Activities like this may illuminate discrete and continuous connections

Instructional Implications

- Students may benefit from additional instruction on the connections between functions and vectors
- Terms like Δx carry contextual meaning
- Access to multiple representations can help students better understand discretization

Thank you!

Many thanks to the OSUPER team, our participant, and our funding supporters!

Additional Questions: solorich@oregonstate.edu

Find resources & research: % paradigms.oregonstate.edu % osuper.science.oregonstate.edu

Try the Activity: % https://beav.es/TQP

Graphical Representation Comparison

Mary's partner's drawing in W21 video

Mary's drawing during W22 interview