Making sense of quantum mechanics with the languages of physics

Elizabeth Gire
Oregon State University
Colloquium 11/7/2023

$$
1 / \sqrt{2}|+\rangle+i / \sqrt{2}|-\rangle
$$

What l'm going to talk about...

A Bit About My Story

Thinking with External Representations

Discrete \& Continuous Observables

Quantum Representations for Understanding the Connection Between Discrete and Continuous Observables

A Bit About My Story

Google Scholar Word Cloud

Guiding Research Aim

How can we best support the learning of the next generation of physicists?

osuper.science.oregonstate.edu

Faculty

Elizabeth Gire Corinne Manogue Doris Li
Patti Hamerski Tevian Dray
Emily Van Zee
Paul Emigh

Grad Students Dustin Treece Adam Frye Jason Ward Pachi Her Noah Leibnitz Luke Nearhood

Former Members Christian Solorio Jonathan Alfson Kelby Hahn David Roundy Michael Vignal MacKenzie Lenz Greg Mulder Emily Smith Len Cerny Kerry Brown Grant Sherer Ian Founds Mesa Walker Mary Bridget Kustusch
Rabindra Bajracharya

NSF DUE Grant Nos. 9653250, 0231194 0618877, 0837829, 1023120, 1141330, 1323800,1612480,1836603,1836604

Thinking with External Representations

External Representations

Organized
Information

Medium
Referent

External Representations

Metaphors for the Brain

Brain-as-Computer

Brain-as-Muscle

Brain-as-Beaver*

Brain as Beaver

Thought draws on resources external to the brain

The resources affect the nature and quality of thought

Thinking well is a state that depends on those resources and the knowledge of how to use them well.

A. M. Paul, The Extended Mind, 2021

Brain-as-Beaver

Opportunities

"use bodily movements and gestures to understand highly conceptual subjects like science"
"how abstract ideas can be turned into physical objects that can be manipulated and transformed in order to achieve insights and solve problems"
"Classroom groups and workplace teams ...coached in scientifically validated methods of increasing the collective intelligence of their members"

Embodied Cognition

Situated Cognition

Distributed Cognition

External Representations

Languages $=$ Tools for Thinking \& Communication

"'Concepts’ as they are used in scientific communication, and in scientific work generally, are not defined by the common denominator of their representations, but by the sum, the union of meanings implied by all these representations...What we call abstract concepts is only a shorthand for a multimodal semiotic construction, a simultaneous and multiply articulated cluster of independent practices."

Jay Lemke
Multiplying meaning: Visual and verbal semiotics in scientific text, 1998

Instructional Context

Paradigms in Physics

Quantum Fundamentals \& Central Forces Courses

- "Spins First" Approach (McIntyre textbook)
- Stern-Gerlach Simulation to explore postulates of quantum mechanics
- Emphasize Multiple Representations
- Computational lab

$$
\left[\begin{array}{c}
1 / \sqrt{2} \\
i / 1
\end{array} \quad 1 / \sqrt{2}|+\rangle+i / \sqrt{2}|-\rangle\right.
$$

$$
\psi(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

Discrete

Continuous

Motivation

Spin

Particle in a Box

Discrete \& Continuous Observables

Spin Component

$$
S_{z}= \pm \frac{\hbar}{2}
$$

$\mathscr{P}\left(S_{z}=+\frac{\hbar}{2}\right)=\left|z\left\langle+\mid \psi_{s}\right\rangle\right|^{2}$

Energy of Particle in a Box

$|n\rangle$

$$
|n\rangle \doteq \phi_{n}(x)
$$

$\mathscr{P}\left(E=E_{n}\right)=\left|\left\langle n \mid \psi_{p}\right\rangle\right|^{2}$
$\mathscr{P}\left(E=E_{n}\right)=\left|\int_{0}^{L} \phi_{n}^{*}(x) \psi_{p}(x) d x\right|^{2}$

$$
\left.\mathscr{P}\left(E_{1}<E<E_{10}\right)\right)=\sum_{n=1}^{10}\left|\left\langle n \mid \psi_{p}\right\rangle\right|^{2} \quad \mathscr{P}(a<x<b)=\int_{a}^{b}\left|\psi_{p}(x)\right|^{2} d x
$$

Going from Kets to Wavefunctions: Our Former Approach

"rules for translating bra-ket formulae to wave function formulae"
$\begin{array}{ll}\text { 1) Replace ket with wave function } & |\psi\rangle \rightarrow \psi(x) \\ \text { 2) Replace bra with wave function conjugate } & \langle\psi| \rightarrow \psi^{*}(x) \\ \text { 3) Replace braket with integral over all space } & \langle\mid\rangle \rightarrow \int_{-\infty}^{\infty} d x \\ \text { 4) Replace operator with position representation } & \hat{A} \rightarrow A(x)\end{array}$

Calculating Probabilities

$$
\begin{aligned}
\mathscr{P}\left(E_{n}\right)=|\langle n \mid \psi\rangle|^{2} \longrightarrow \mathscr{P}\left(E_{n}\right) & =\left|\int \phi_{n}^{*}(x) \psi(x) d x\right|^{2} \mathscr{P}\left(E_{n}\right) \neq \int\left|\phi_{n}^{*}(x) \psi(x)\right|^{2} d x \\
\mathscr{P}(a<x<b) & =\int_{a}^{b}|\psi(x)|^{2} d x \\
& =\int_{a}^{b} \psi^{*}(x) \psi(x) d x
\end{aligned}
$$

Calculating Probabilities

$$
\begin{aligned}
& \mathscr{P}\left(E_{n}\right)=|\langle n \mid \psi\rangle|^{2} \longrightarrow \mathscr{P}\left(E_{n}\right)=\left|\int \phi_{n}^{*}(x) \psi(x) d x\right|^{2} \mathscr{P}\left(E_{n}\right) \neq \int\left|\phi_{n}^{*}(x) \psi(x)\right|^{2} d x \\
& \mathscr{P}(a<x<b)=\int_{a}^{b}|\psi(x)|^{2} d x \\
& \mathscr{P}\left(\int \phi_{n}^{*}(x) \psi(x) d x \mid\right. \\
&=\int_{a}^{b} \psi^{*}(x) \psi(x) d x
\end{aligned}
$$

Calculating Probabilities

$$
\begin{array}{rlr}
\mathscr{P}\left(E_{n}\right)=|\langle n \mid \psi\rangle|^{2} & \rightarrow \mathscr{P}\left(E_{n}\right)=\left|\int \phi_{n}^{*}(x) \psi(x) d x\right|^{2} & \mathscr{P}\left(E_{n}\right) \neq \int\left|\phi_{n}^{*}(x) \psi(x)\right|^{2} d x \\
\mathscr{P}(a<x<b)=\int_{a}^{b}|\psi(x)|^{2} d x & \mathscr{P}\left(E_{n}\right) \neq \int \phi_{n}^{*}(x) \psi(x) d x \mid \\
& =\int_{a}^{b} \psi^{*}(x) \psi(x) d x &
\end{array}
$$

$$
\mathscr{P}\left(x_{0}\right) \neq\left|\left\langle x_{0} \mid \psi\right\rangle\right|^{2}=\left|\psi\left(x_{0}\right)\right|^{2}
$$

Quantum Representations

for Understanding the Connection Between Discrete and Continuous Observables

- Python Code

```
sum = 0
for x in np.arange(0, L, dx):
    sum += np.conj(Phi(n, x))*Psi(x)*dx
```

- Special forms of 1

$$
\sum_{n}|n\rangle\langle n|=1 \quad \int_{x}|x\rangle\langle x| d x=1
$$

- Arms Representation of Complex Numbers

Grant Sherer

Python Code

Inner Products

$\left\langle\phi_{n} \mid \psi\right\rangle$

Student Understanding of Discrete \& Continuous

In Quantum Mechanics

Discrete Approximations of Integrals

- Accuracy and $d x$ size
- Limiting processes to go from summation to integration

A Special Form of 1: Completeness Relations

Geometry of Completeness Relations

Geometry of Completeness Relations

Geometry of Completeness Relations

$$
{ }^{y} \uparrow \quad \vec{v}=v_{x} \hat{x}+v_{y} \hat{y}
$$

Geometry of Completeness Relations

$$
\xrightarrow[\langle x \mid v\rangle|x\rangle]{\langle y \mid v\rangle|y\rangle} \underbrace{}_{x} \begin{gathered}
\vec{v}=v_{x} \hat{x}+v_{y} \hat{y} \\
|v\rangle=\langle x \mid v\rangle|x\rangle+\langle y \mid v\rangle|y\rangle
\end{gathered}
$$

Geometry of Completeness Relations

$$
\xrightarrow[\langle y \mid v\rangle|y\rangle \underbrace{\langle }_{\langle x \mid v\rangle|x\rangle}{ }^{|c| v\rangle}]{ } \begin{gathered}
\vec{v}=v_{x} \hat{x}+v_{y} \hat{y} \\
|v\rangle= \\
=\langle x \mid v\rangle|x\rangle+\langle y \mid v\rangle|y\rangle \\
=|x\rangle\langle x \mid v\rangle+|y\rangle\langle y \mid v\rangle
\end{gathered}
$$

Geometry of Completeness Relations

Geometry of Completeness Relations

$\xrightarrow[\langle x \mid v\rangle|x\rangle]{\langle y \mid v\rangle|y\rangle\rangle}$| | $\vec{v}=v_{x} \hat{x}+v_{y} \hat{y}$ |
| ---: | :--- |
| $\|v\rangle$ | $=\langle x \mid v\rangle\|x\rangle+\langle y \mid v\rangle\|y\rangle$ |
| | $=\|x\rangle\langle x \mid v\rangle+\|y\rangle\langle y \mid v\rangle$ |
| | $=\|x\rangle\langle x\|\|v\rangle+\|y\rangle\langle y\|\|v\rangle$ |
| $\|v\rangle$ | $=(\|x\rangle\langle x\|+\|y\rangle\langle y\|)\|v\rangle$ |

Completeness (Closure) Relations

Spin $1 / 2$ System

Writing a State in a Basis

$$
\begin{aligned}
|\psi\rangle & =(1)|\psi\rangle \\
& =\left(\sum_{n}|n\rangle\langle n|\right)|\psi\rangle \\
& =\sum_{n}|n\rangle\langle n \mid \psi\rangle \\
& =\sum_{n}\langle n \mid \psi\rangle|n\rangle \\
& =\sum_{n} c_{n}|n\rangle
\end{aligned}
$$

$$
|\psi\rangle \doteq c_{n}
$$

$$
\begin{aligned}
|\psi\rangle & =(1)|\psi\rangle \\
& =\left(\int|x\rangle\langle x| d x\right)|\psi\rangle \\
& =\int|x\rangle\langle x \mid \psi\rangle d x \\
& =\int\langle x \mid \psi\rangle|x\rangle d x \\
& =\int \psi(x)|x\rangle d x \\
|\psi\rangle & \doteq \psi(x)
\end{aligned}
$$

PER around Completeness Relations

- Physical dimensions of kets
- Translating between wavefunctions \& kets

$$
\begin{array}{rlr}
C_{n} & =\int \varphi_{n}^{*}(x) \psi(x) d x \\
& =\int\left(\langle x| \varphi_{n}\right)^{*}(\langle x \mid \psi\rangle) d x & \quad f(x)=\langle x \mid f\rangle \\
& =\int\left\langle\varphi_{n} \mid x\right\rangle\langle x \mid \psi\rangle d x & (\langle a \mid b\rangle)^{*}=\langle b \mid a\rangle \\
& =\left\langle\varphi_{n}\right|\left(\int|x\rangle\langle x| d x\right)|\psi\rangle & \left\langle\varphi_{n}\right| \text { and }|\psi\rangle \text { not functions of } x
\end{array}
$$

Arms Representation

Arms Basics

Quantum Concepts \& Arms

Quantum states are vectors with complex components

$$
|\psi\rangle=c_{+}|+\rangle_{z}+c_{-}|-\rangle_{z} \quad|\psi\rangle \doteq\left[\begin{array}{l}
c_{+} \\
c_{-}
\end{array}\right]
$$

Quantum Concepts \& Arms

Cartesian space and Hilbert space are different

Quantum Concepts \& Arms

Cartesian space and Hilbert space are different

Quantum Concepts \& Arms

Cartesian space and Hilbert space are different

Quantum Concepts \& Arms

Vectors that differ by an overall phase represent the same quantum state

$$
|\psi\rangle=c_{+}|+\rangle+c_{-}|-\rangle \quad|\psi\rangle=e^{i \phi}\left(c_{+}|+\rangle+c_{-}|-\rangle\right)
$$

Quantum Concepts \& Arms

Quantum states evolve with time - time \& energy-dependent phase on terms in energy eigenstate expansion

$$
|\psi(t)\rangle=c_{+} e^{-i E_{+}+/ \hbar}|+\rangle+c_{-} e^{-i E_{-} t / \hbar}|-\rangle
$$

Wavefunction with Arms

Formalisms for discrete and continuous quantum systems are related.

$$
c_{ \pm}={ }_{z}\langle \pm \mid \psi\rangle \quad \psi(x)=\langle x \mid \psi\rangle
$$

Kinesthetic Activities for Upper Division Quantum Mechanics?!

Activate sensorimotor brain systems
Make decisions about how configure and move sequentially

Re-representation

For quantum systems (>1 people), have to socially negotiate
Introduces silliness and laughter

Hahn \& Gire, Am. J. Phys., 2022
Solomon, et al., Phys. Ed., 1991
Kontra, et al., Psychol. Sci., 2015
Duijzer, et al., Educ. Psychol. Rev., 2019
Struck \& Yerrick, J. Sci Educ. Technol., 2010,
Beichner, et al., Am. J. Phys., 1990
Hubber, Titler, \& Haslam, Res. Sci. Educ., 2010

Arms Affordances \& Constraints

$\sqrt{ }$ 4D
\checkmark Phase Angle Salient
\checkmark Accommodate Physical Ability
\checkmark Components of complex numbers
vs. quantum basis
\checkmark Memorable

Arms Affordances \& Constraints

$\sqrt{ }$ 4D
\checkmark Phase Angle Salient
\checkmark Accommodate Physical Ability
\checkmark Components of complex numbers vs. quantum basis

- Arm length not adjustable for different norms
- Information that is not externalized
- Visualization? (Literalness??)
- Self Consciousness
\checkmark Memorable

Arms Activities

Representing QM Particle on a Ring with Arms

Assign angular positions to students

Energy Eigenstate

$$
m=1
$$

$E_{1}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i \phi}$

Energy Eigenstate

$$
m=1
$$

$E_{1}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i \phi}$

Time Evolution

$\mathrm{m}=1$

$$
\begin{aligned}
E_{1}(\phi) & =\frac{1}{\sqrt{2 \pi}} e^{-i E_{1} t / \hbar} e^{i \phi} \\
& =\frac{1}{\sqrt{2 \pi}} e^{i\left(\phi-E_{1} t / \hbar\right)}
\end{aligned}
$$

Time Evolution

$\mathrm{m}=1$
$\mathrm{m}=2$
$E_{2}=4 E_{1}$

Superposition

$\psi(x)=N\left(\phi_{1}(x)+\phi_{2}(x)\right)$

$$
E_{2}=4 E_{1}
$$

Graphical Superposition

 Infinite Square Well
$\operatorname{Im}[\psi]$

Research about Arms

- Reasoning with Arms
- Kinesthetic Activities \& Student Identity
- Structural features analysis

Hahn, Dissertation, 2022
Frye, MS Project

Hahn, Dissertation, 2022

Gire, et al., in review

Summary

Summary

External representations are tools for doing and communicating physics

- Extra-neural resources for thinking
- Professionals \& Learners need different structural features

Completeness relations, Computation, \& Arms representation are promising supports for students in the transition between spin \& infinite square well

3 Books Recommendations

THINGS THAT
M A K E U S
S MART

DEFENDING
ATTRIBUTES IN
THE AGE OF THE
MACHINE

Paradigms in Physics

paradigms.oregonstate.edu

Welcome to the Paradigms in Physics curricular materials website!

This site is under construction, and currently the easiest way to find curricular material that you're interested in is with the search bar on the upper right.
If you're interested in browsing our content, probably the most useful approach is to browse the sequences of activities and homework.

Featured Searches:
quantum angular momentum spin arms kinesthetic "Raising Physics to the Surface"

Thank You!

liz.gire@oregonstate.edu

